If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-141x+4898=0
a = 1; b = -141; c = +4898;
Δ = b2-4ac
Δ = -1412-4·1·4898
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-141)-17}{2*1}=\frac{124}{2} =62 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-141)+17}{2*1}=\frac{158}{2} =79 $
| 60+14x=448+12x | | 2x+6x+8=4x(x-2 | | -w-5/4=1/4w-7/3 | | 1/2(x+8)-x=2x+8 | | 2x8=32 | | 4(10)^(3x)=12 | | 6x+32=3x6 | | 24x24=x | | (4x-5)/(2x-1)=0 | | 5x/6=4/2-2x/3 | | X^2•4^x=512 | | 6m-12=15m-2 | | 1/3+5x/6=7/12 | | 6/21=x/28 | | 6m-12=15-2 | | 7(1x+4)=10 | | 5a+6+7a=2 | | (n–35)÷7=70 | | x-5/3-x+1/4=5 | | 3x-7=3(5+x) | | X+1/x-1=2x-5/2x-7 | | n/5-2=-4 | | 5x+9-2= | | 12x-10+3x+40=180 | | 20-2x/x-10=-2 | | 10x-24=8x+64 | | w(3w-4)=119 | | 3p(3p-8)=9p(p-3)+4 | | 4x+9=6+20x | | 21x-2+38+5=180 | | 140x-35=70 | | (2/3)(x)+1=x-4 |